Theorem 3.1. ([60]) Let K be a field of characteristic p, and let E/K be an elliptic curve. For each integer r ≥ 1, let
φ r : E − → E ( p r ) a n d φˆ r : E ( p r ) − → E be the pr-power Frobenius map and its dual.
(a) The following are equivalent.
(i) E[pr]=0forone(all)r≥1.
(ii) φˆr is (purely) inseparable for one (all) r ≥ 1.
(iii) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2 .
(iv) End(E) is an order in a quaternion algebra.
(v) The formal group Eˆ/K associated to E has height 2. (See (IV §7).)
有的书上直接用(iv)作为定义。怎么推出|E(F_p)|=p+1?还要费点功夫:
a ≡ 0 (mod p) ⇐⇒ E is supersingular
如果K就是F_p,那么a=0.
san721 写了: 2023年 9月 23日 18:16 我手边现在没有这本书,但我猜测这是在谈论supersingular reduction。“so it is nonsingular” 意思是说作为一条椭圆曲线,首先globally它是non-singular的。对于一个素数p, 一条椭圆曲线E/Q 的mod p reduction是supersingular的if |E(F_p)|=p+1或者说,这条曲线的L-function对应的系数a_p=0. Noam Elkies在1987年证明了,对于任何一条给定的E/Q, it has infinitely many supersingular primes.