YWY 写了: 2023年 1月 29日 12:08
好的,我们(再)明确下题目:就是一直投一直投,直到投出连续两次7或者一次12为止,谁先出现都算,出现了就不再投了,求投掷次数的平均值(期望值)。
这个应该比前面的更繁杂些,让我想想。
Let s, t and e stand for seven, twelve and else, respectively. For a single throw of 2 dice, the probability of getting 7 is p(s) = 1/6, the probability of of getting 12 is p(t) = 1/36, and the probability of getting others is p(e) = 29/36.
For the question above, let p(n) be the probability of ending the game with n rolls. Then
p(1) = p(t) = 1/36,
p(2) = p(s)p(s) + [p(s)+p(e)]p(t) = 1/36 + 35/36^2 = 71/36^2.
For n > 2, we get p(n) = p(s)p(e)p(n-2) + p(e)p(n-1) = (29/216)p(n-2) + (29/36)p(n-1).
Now we can deduce the expected value E = 1p(1) + 2p(2) + 3p(3) + ... via the method mentioned above (starting with E - 1p(1) - 2p(2) and then using p(n) = (29/216)p(n-2) + (29/36)p(n-1)).