复变函数的精华是解析延拓。
解析延拓仿似“有物浑然天成,天然去雕琢,妙手偶得之。不增不减,此物唯一”。不似实变函数可以人工裁剪粘贴,如 y = exp(-1/x) when x > 0, y = 0, when x <= 0, 虽然在整个实数轴上无穷可微但它就不是一个天然的复平面上的解析函数, 人工斧凿总归不能胜天工。
解析延拓虽然绝大多数教课书上都是以 power series 的一个一个小收敛圆去逐渐开拓,但实际上的被研究的著名函数很少有这样被拓展的, 如黎曼 zeta 函数, 原因之一当然是因为zeta函数初定义是dirichlet series, 而dirichlet series的收敛域是部分半平面不是收敛圆。黎曼在18xx是怎么想到从复变函数去研究dirichlet series的?实在让人惊叹。
复变函数的精华是解析延拓。
解析延拓仿似“有物浑然天成,天然去雕琢,妙手偶得之。不增不减,此物唯一”。不似实变函数可以人工裁剪粘贴,如 y = exp(-1/x) when x > 0, y = 0, when x <= 0, 虽然在整个实数轴上无穷可微但它就不是一个天然的复平面上的解析函数, 人工斧凿总归不能胜天工。
解析延拓虽然绝大多数教课书上都是以 power series 的一个一个小收敛圆去逐渐开拓,但实际上的被研究的著名函数很少有这样被拓展的, 如黎曼 zeta 函数, 原因之一当然是因为zeta函数初定义是dirichlet series, 而dirichlet series的收敛域是部分半平面不是收敛圆。黎曼在18xx是怎么想到从复变函数去研究dirichlet series的?实在让人惊叹。
复变函数的精华是解析延拓。
解析延拓仿似“有物浑然天成,天然去雕琢,妙手偶得之。不增不减,此物唯一”。不似实变函数可以人工裁剪粘贴,如 y = exp(-1/x) when x > 0, y = 0, when x <= 0, 虽然在整个实数轴上无穷可微但它就不是一个天然的复平面上的解析函数, 人工斧凿总归不能胜天工。
解析延拓虽然绝大多数教课书上都是以 power series 的一个一个小收敛圆去逐渐开拓,但实际上的被研究的著名函数很少有这样被拓展的, 如黎曼 zeta 函数, 原因之一当然是因为zeta函数初定义是dirichlet series, 而dirichlet series的收敛域是部分半平面不是收敛圆。黎曼在18xx是怎么想到从复变函数去研究dirichlet series的?实在让人惊叹。
复变函数的精华是解析延拓。
解析延拓仿似“有物浑然天成,天然去雕琢,妙手偶得之。不增不减,此物唯一”。不似实变函数可以人工裁剪粘贴,如 y = exp(-1/x) when x > 0, y = 0, when x <= 0, 虽然在整个实数轴上无穷可微但它就不是一个天然的复平面上的解析函数, 人工斧凿总归不能胜天工。
解析延拓虽然绝大多数教课书上都是以 power series 的一个一个小收敛圆去逐渐开拓,但实际上的被研究的著名函数很少有这样被拓展的, 如黎曼 zeta 函数, 原因之一当然是因为zeta函数初定义是dirichlet series, 而dirichlet series的收敛域是部分半平面不是收敛圆。黎曼在18xx是怎么想到从复变函数去研究dirichlet series的?实在让人惊叹。
The answer is no. Power series that are lacunary enough cannot be analytically extended beyond the disk of convergence. You can google Hadamard's Gap Theorem for such results.
san721 写了: 2023年 12月 29日 19:03
The answer is no. Power series that are lacunary enough cannot be analytically extended beyond the disk of convergence. You can google Hadamard's Gap Theorem for such results.