再来一道题

对应老买买提的军事天地,观点交锋比较激烈。因为此版帖子太多,所以新帖不出现在首页新帖列表,防止首页新帖刷屏太快。

版主: Softfist

回复
superdsb(超级大傻逼)楼主
论坛支柱
论坛支柱
帖子互动: 420
帖子: 13496
注册时间: 2022年 10月 3日 16:36

#1 再来一道题

帖子 superdsb(超级大傻逼)楼主 »

图片
Ifloating
论坛精英
论坛精英
帖子互动: 259
帖子: 7543
注册时间: 2022年 7月 22日 11:46

#2 Re: 再来一道题

帖子 Ifloating »

上次由 Ifloating 在 2025年 7月 11日 14:34 修改。
mitbbsnew
论坛元老
论坛元老
mitbbsnew 的博客
帖子互动: 238
帖子: 17255
注册时间: 2022年 7月 22日 13:15

#3 Re: 再来一道题

帖子 mitbbsnew »

ChatGPT 胡说八道
swanswan
论坛元老
论坛元老
帖子互动: 349
帖子: 14637
注册时间: 2022年 7月 25日 22:30

#4 Re: 再来一道题

帖子 swanswan »

mitbbsnew 写了: 昨天 14:33 ChatGPT 胡说八道
Chatgpt数学能力垫底。
it是用来提供情绪价值的
greenspring
见习点评
见习点评
帖子互动: 52
帖子: 1274
注册时间: 2022年 7月 21日 23:27

#5 Re: 再来一道题

帖子 greenspring »

f(0)=1
JianguoChuan
见习点评
见习点评
帖子互动: 57
帖子: 1431
注册时间: 2024年 11月 19日 17:20

#6 Re: 再来一道题

帖子 JianguoChuan »

Grok3 gives:


To find ( f(0) ) given that f(f(x))=x2−x+1f(f(x)) = x^2 - x + 1f(f(x)) = x^2 - x + 1
, we need to determine the function ( f(x) ) such that composing it with itself produces the given quadratic expression, and then evaluate ( f(0) ).Let’s denote the given condition as:f(f(x))=x2−x+1.f(f(x)) = x^2 - x + 1.f(f(x)) = x^2 - x + 1.
Our goal is to find ( f(x) ) and compute ( f(0) ). Since ( f(f(x)) ) is a quadratic polynomial, let’s explore the possibility that ( f(x) ) is a linear function, as composing two linear functions can yield a quadratic. Suppose:f(x)=ax+b.f(x) = ax + b.f(x) = ax + b.
Then, compute the composition:f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b.f(f(x)) = f(ax + b) = a(ax + b) + b = a^2 x + ab + b.f(f(x)) = f(ax + b) = a(ax + b) + b = a^2 x + ab + b.
Set this equal to the given expression:a2x+ab+b=x2−x+1.a^2 x + ab + b = x^2 - x + 1.a^2 x + ab + b = x^2 - x + 1.
For the polynomials to be equal, their coefficients must match:Coefficient of x2x^2x^2
: a2=1  ⟹  a=±1a^2 = 1 \implies a = \pm 1a^2 = 1 \implies a = \pm 1
.
Coefficient of ( x ): 0=−1  ⟹  0 = -1 \implies0 = -1 \implies
This is a contradiction unless the linear assumption is incorrect.
Constant term: ab+b=1ab + b = 1ab + b = 1
.

The coefficient of ( x ) gives 0=−10 = -10 = -1
, which is impossible, suggesting that ( f(x) ) may not be linear. Let’s try assuming ( f(x) ) is a quadratic polynomial, say:f(x)=ax2+bx+c.f(x) = ax^2 + bx + c.f(x) = ax^2 + bx + c.
Then:f(f(x))=a(f(x))2+bf(x)+c=a(ax2+bx+c)2+b(ax2+bx+c)+c.f(f(x)) = a(f(x))^2 + b f(x) + c = a (ax^2 + bx + c)^2 + b (ax^2 + bx + c) + c.f(f(x)) = a(f(x))^2 + b f(x) + c = a (ax^2 + bx + c)^2 + b (ax^2 + bx + c) + c.
Expanding this is complex, so let’s simplify our approach by testing the functional equation directly or exploring a substitution method. Since f(f(x))=x2−x+1f(f(x)) = x^2 - x + 1f(f(x)) = x^2 - x + 1
, let’s try to find ( f(0) ) by setting ( x ) to specific values and looking for patterns.Suppose we set x=0x = 0x = 0
:f(f(0))=02−0+1=1.f(f(0)) = 0^2 - 0 + 1 = 1.f(f(0)) = 0^2 - 0 + 1 = 1.
Let f(0)=kf(0) = kf(0) = k
. Then:f(k)=1.f(k) = 1.f(k) = 1.
This tells us that applying ( f ) to ( f(0) ) yields 1. Let’s try another point. Set x=1x = 1x = 1
:f(f(1))=12−1+1=1.f(f(1)) = 1^2 - 1 + 1 = 1.f(f(1)) = 1^2 - 1 + 1 = 1.
Let f(1)=mf(1) = mf(1) = m
. Then:f(m)=1.f(m) = 1.f(m) = 1.
Notice that both f(k)=1f(k) = 1f(k) = 1
and f(m)=1f(m) = 1f(m) = 1
, suggesting that 1 might be a fixed point or a value that multiple inputs map to. Let’s try to hypothesize a form for ( f(x) ). Since f(f(x))=x2−x+1f(f(x)) = x^2 - x + 1f(f(x)) = x^2 - x + 1
, let’s test if f(x)=x2−x+1f(x) = x^2 - x + 1f(x) = x^2 - x + 1
, assuming ( f ) is its own inverse under composition (i.e., f(f(x))=xf(f(x)) = xf(f(x)) = x
), but that would imply:x2−x+1=x,x^2 - x + 1 = x,x^2 - x + 1 = x,
which is not true for all ( x ), so f(x)≠x2−x+1f(x) \neq x^2 - x + 1f(x) \neq x^2 - x + 1
.Let’s try a substitution approach. Assume y=f(x)y = f(x)y = f(x)
, so f(y)=x2−x+1f(y) = x^2 - x + 1f(y) = x^2 - x + 1
. We need ( f(y) ), and then we can try to express ( x ) in terms of ( y ). This is complex, so let’s focus on finding ( f(0) ) directly.Another approach is to assume ( f ) is a polynomial and use the degree of the composition. If deg⁡(f)=n\deg(f) = n\deg(f) = n
, then deg⁡(f(f(x)))=n2\deg(f(f(x))) = n^2\deg(f(f(x))) = n^2
. Since x2−x+1x^2 - x + 1x^2 - x + 1
has degree 2, we have:n2=2  ⟹  n=2,n^2 = 2 \implies n = \sqrt{2},n^2 = 2 \implies n = \sqrt{2},
which is not an integer, suggesting ( f ) may not be a polynomial unless it’s of degree 1, which we’ve ruled out. Let’s try a functional approach by setting values. Suppose we try to find a fixed point where f(x)=xf(x) = xf(x) = x
:f(f(x))=f(x)=x2−x+1.f(f(x)) = f(x) = x^2 - x + 1.f(f(x)) = f(x) = x^2 - x + 1.
Then:f(x)=x2−x+1=x.f(x) = x^2 - x + 1 = x.f(x) = x^2 - x + 1 = x.
Solve:x2−x+1=x  ⟹  x2−2x+1=0  ⟹  (x−1)2=0  ⟹  x=1.x^2 - x + 1 = x \implies x^2 - 2x + 1 = 0 \implies (x - 1)^2 = 0 \implies x = 1.x^2 - x + 1 = x \implies x^2 - 2x + 1 = 0 \implies (x - 1)^2 = 0 \implies x = 1.
So, if f(1)=1f(1) = 1f(1) = 1
, then:f(f(1))=f(1)=1,f(f(1)) = f(1) = 1,f(f(1)) = f(1) = 1,
and check:12−1+1=1,1^2 - 1 + 1 = 1,1^2 - 1 + 1 = 1,
which holds. This confirms f(1)=1f(1) = 1f(1) = 1
, but we need ( f(0) ). Let’s try assuming ( f ) is an involution, i.e., f(f(x))=xf(f(x)) = xf(f(x)) = x
, but that contradicts our given equation unless misinterpreted.Instead, let’s try numerical or iterative substitution. Set f(0)=kf(0) = kf(0) = k
, so f(k)=1f(k) = 1f(k) = 1
. We need another relation. Try x=kx = kx = k
:f(f(k))=k2−k+1.f(f(k)) = k^2 - k + 1.f(f(k)) = k^2 - k + 1.
Since f(k)=1f(k) = 1f(k) = 1
, we have:f(1)=k2−k+1.f(1) = k^2 - k + 1.f(1) = k^2 - k + 1.
We already have f(1)=mf(1) = mf(1) = m
and f(m)=1f(m) = 1f(m) = 1
. Let’s hypothesize f(1)=0f(1) = 0f(1) = 0
:f(0)=k,f(k)=1,f(1)=0,f(0)=k  ⟹  f(f(1))=f(0)=k.f(0) = k, \quad f(k) = 1, \quad f(1) = 0, \quad f(0) = k \implies f(f(1)) = f(0) = k.f(0) = k, \quad f(k) = 1, \quad f(1) = 0, \quad f(0) = k \implies f(f(1)) = f(0) = k.
Check:f(f(1))=12−1+1=1,f(f(1)) = 1^2 - 1 + 1 = 1,f(f(1)) = 1^2 - 1 + 1 = 1,
so:f(0)=k=1.f(0) = k = 1.f(0) = k = 1.
This suggests f(0)=1f(0) = 1f(0) = 1
. Let’s verify by assuming f(0)=1f(0) = 1f(0) = 1
:f(f(0))=f(1)=1,f(f(0)) = f(1) = 1,f(f(0)) = f(1) = 1,
and we need consistency. Try another point, say x=2x = 2x = 2
:f(f(2))=22−2+1=4−2+1=3.f(f(2)) = 2^2 - 2 + 1 = 4 - 2 + 1 = 3.f(f(2)) = 2^2 - 2 + 1 = 4 - 2 + 1 = 3.
So:f(f(2))=3.f(f(2)) = 3.f(f(2)) = 3.
Assume f(2)=pf(2) = pf(2) = p
, then f(p)=3f(p) = 3f(p) = 3
. We need a consistent function. Let’s try to construct ( f ). Suppose f(0)=1f(0) = 1f(0) = 1
, and check if we can build pairs. This is getting complex, so let’s finalize by testing f(0)=1f(0) = 1f(0) = 1
.Assume a linear form again or test values. Since linear didn’t work, let’s try a simpler hypothesis or numerical check. Given f(0)=1f(0) = 1f(0) = 1
, and knowing f(f(0))=1f(f(0)) = 1f(f(0)) = 1
, we have:f(1)=1.f(1) = 1.f(1) = 1.
Check other points to ensure consistency. Try x=3x = 3x = 3
:f(f(3))=32−3+1=9−3+1=7.f(f(3)) = 3^2 - 3 + 1 = 9 - 3 + 1 = 7.f(f(3)) = 3^2 - 3 + 1 = 9 - 3 + 1 = 7.
So:f(f(3))=7.f(f(3)) = 7.f(f(3)) = 7.
Without a closed form for ( f ), let’s confirm f(0)=1f(0) = 1f(0) = 1
by assuming it and checking consistency across multiple points, but our derivation suggests:f(0)=1f(0) = 1f(0) = 1
is plausible. To be rigorous, we’d solve for ( f ), but the pattern f(0)=1f(0) = 1f(0) = 1
, f(1)=1f(1) = 1f(1) = 1
, fits the equation at tested points.Thus, the value of ( f(0) ) is likely:1\boxed{1}\boxed{1}
This answer is based on the consistency of f(f(0))=1f(f(0)) = 1f(f(0)) = 1
and testing the functional equation, though a full function ( f ) would require solving the functional equation more thoroughly, possibly assuming a specific form or numerical iteration. If you need a deeper derivation, I can explore further!
头像
redot(红薯林)
论坛元老
论坛元老
帖子互动: 532
帖子: 17061
注册时间: 2024年 7月 4日 23:40

#7 Re: 再来一道题

帖子 redot(红薯林) »

1.不用想太复杂了吧
图片
kde23
正式会员
正式会员
帖子互动: 5
帖子: 10
注册时间: 2022年 10月 18日 23:54

#8 Re: 再来一道题

帖子 kde23 »

(f(x))^2 - f(x) + 1 = f(f(f(x)) = f(x^2 -x + 1)
x=1: f(1)^2 - f(1) + 1 = f(1)
f(1) = 1
x=0: f(0)^2 - f(0) + 1 = f(1) = 1
f(0) = 0 or 1
if f(0)=0: 1=0^2-0+1=f(f(0))=f(0)
so, f(0)= 1
x3 图片
头像
huangchong(净坛使者)
论坛元老
论坛元老
2023-24年度优秀版主
帖子互动: 3616
帖子: 56665
注册时间: 2022年 7月 22日 01:22

#9 Re: 再来一道题

帖子 huangchong(净坛使者) »

superdsb 写了: 昨天 14:12 图片
看这种题就晕
头像
huangchong(净坛使者)
论坛元老
论坛元老
2023-24年度优秀版主
帖子互动: 3616
帖子: 56665
注册时间: 2022年 7月 22日 01:22

#12 Re: 再来一道题

帖子 huangchong(净坛使者) »

按给的公式: f[f(0)]=0^2-0+1=1 , f[f(1)]=1^2-1+1=1
所以1==f[f(0)]==f[f(1)]

那么 f(1)=f{f[f(0)]}==f{f[f(1)]}
看右边这半, 因为函数嵌套是可以遵循结合律的, 把 f(1)看作一个整体,设f(1)=z
z= f(1)= f [f( f(1))]=f[f(z)] =z^2-z+1
解二元一次方程得z=1
所以f(1)=1
代回 f(1)=f{f[f(0)]},设f(0)=w
1= f[f(w)]=w^2-w+1

得f(0)=w=0 或者1

到底是0还是1?没想好。
上次由 huangchong 在 2025年 7月 12日 14:21 修改。
头像
huangchong(净坛使者)
论坛元老
论坛元老
2023-24年度优秀版主
帖子互动: 3616
帖子: 56665
注册时间: 2022年 7月 22日 01:22

#13 Re: 再来一道题

帖子 huangchong(净坛使者) »

huangchong 写了: 今天 14:15 按给的公式: f[f(0)]=0^2-0+1=1 , f[f(1)]=1^2-1+1=1
所以1==f[f(0)]==f[f(1)]

那么 f(1)=f{f[f(0)]}==f{f[f(1)]}
看右边这半, 因为函数嵌套是可以遵循结合律的, 把 f(1)看作一个整体,设f(1)=z
z= f(1)= f [f( f(1))]=f[f(z)] =z^2-z+1
解二元一次方程得z=1
所以f(1)=1
代回 f(1)=f{f[f(0)]},设f(0)=w
1= f[f(w0]=w^2-w+1

得f(0)=w=0 或者1

到底是0还是1?没想好。
偷看了一眼kde同学的答案:
f(0)=0的话, 0=f(0)=f[f(0)]=0^2-0+1=1 ,矛盾了,
而f(0)=1的话, 1=f(1)=f[f(1)]=1^2-1+1=1 ,不矛盾,所以 答案只剩下1

那会不会有其他的矛盾呢?不知道。

不管怎么说,这是我这辈子第一次会做这种函数套函数题。本科时候看这种题就晕。
头像
OPQ(文忠道)
知名作家
知名作家
帖子互动: 66
帖子: 1161
注册时间: 2022年 10月 20日 23:35

#14 Re: 再来一道题

帖子 OPQ(文忠道) »

a nice problem!
2023年12月,张雪峰在一个直播片段中表示“文科都是服务业,什么是服务业?总结称一个字就是‘舔’,就是‘爷, 我给你笑一个’”。这一言论引发网民争议。
japamer
正式写手
正式写手
japamer 的博客
帖子互动: 24
帖子: 203
注册时间: 2022年 10月 27日 22:33

#15 Re: 再来一道题

帖子 japamer »

kde23 写了: 今天 13:08 (f(x))^2 - f(x) + 1 = f(f(f(x)) = f(x^2 -x + 1)
x=1: f(1)^2 - f(1) + 1 = f(1)
f(1) = 1
x=0: f(0)^2 - f(0) + 1 = f(1) = 1
f(0) = 0 or 1
if f(0)=0: 1=0^2-0+1=f(f(0))=f(0)
so, f(0)= 1
这个证明确实很巧。
但,这个函数是不是真的存在?
如果不是,那么这个题的意义只在于这个技巧本身。
头像
huangchong(净坛使者)
论坛元老
论坛元老
2023-24年度优秀版主
帖子互动: 3616
帖子: 56665
注册时间: 2022年 7月 22日 01:22

#16 Re: 再来一道题

帖子 huangchong(净坛使者) »

japamer 写了: 今天 14:22 这个证明确实很巧。
但,这个函数是不是真的存在?
如果不是,那么这个题的意义只在于这个技巧本身。
我怀疑不存在。 可能拿几个特殊条件推会发现题设不可能成立,或者成立的可能性很低。
greenspring
见习点评
见习点评
帖子互动: 52
帖子: 1274
注册时间: 2022年 7月 21日 23:27

#17 Re: 再来一道题

帖子 greenspring »

函数是存在的,只不过定义域只有x=0,1
x1 图片
头像
huangchong(净坛使者)
论坛元老
论坛元老
2023-24年度优秀版主
帖子互动: 3616
帖子: 56665
注册时间: 2022年 7月 22日 01:22

#18 Re: 再来一道题

帖子 huangchong(净坛使者) »

greenspring 写了: 今天 14:44 函数是存在的,只不过定义域只有x=0,1
有意思
回复

回到 “军事天地(Military)”