In this paper, we rigorously derive the fundamental PDEs of fluid mechanics, such as the compressible Euler and incompressible Navier-Stokes-Fourier equations, starting from the hard sphere particle systems undergoing elastic collisions. This resolves Hilbert’s sixth problem, as it pertains to the program of deriving the fluid equations from Newton’s laws by way of Boltzmann’s kinetic theory. The proof relies on the derivation of Boltzmann’s equation on 2D and 3D tori, which is an extension of our previous work [26].
In this paper, we rigorously derive the fundamental PDEs of fluid mechanics, such as the compressible Euler and incompressible Navier-Stokes-Fourier equations, starting from the hard sphere particle systems undergoing elastic collisions. This resolves Hilbert’s sixth problem, as it pertains to the program of deriving the fluid equations from Newton’s laws by way of Boltzmann’s kinetic theory. The proof relies on the derivation of Boltzmann’s equation on 2D and 3D tori, which is an extension of our previous work [26].
Kinetic Theory: The Boltzmann equation and its connection to hydrodynamics and statistical mechanics were made rigorous (work by C. Villani and others).